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Abstract. A new general non-perturbative method for the solution of the generalized
master equation for a simple two-level model of the electron–phonon system coupled to a
thermodynamic reservoir is suggested. The model includes a two-level system interacting
linearly with the single-mode phonons coupled to the thermodynamic bath. For the interaction of
the bath with the vibrational mode we use a stochastic model generalized to finite temperatures.
The results are compared with a direct numerical solution.

1. Introduction

Electron–phonon coupling is one of the basic phenomena encountered in the investigation
of the dynamics of the electronic states in molecules and solids. In the usual approach
to the description of the transfer phenomena, the two-level model system interacts with a
Gaussian stochastic bath, modelling the influence of a large number of phonon modes [1],
or is divided into a single mode coupled to the model system and the remaining modes
[2–4]. Similar models also play an important role in the description of relaxation of the
excited states due to the electron–phonon coupling. Here, a two-level three-mode model
[5, 6] or a two-level one mode model [7] have been successfully used.

The dynamics in such systems is usually studied by means of the time-dependent
Schr̈odinger equation [4–6] or a master equation for the reduced density matrix elements
[2, 7, 8]. A powerful tool in this respect is the so-called generalized master equation
(GME) (see e.g. [9–11]). In this work, we extend a special method for the solution of
GME suggested in [12] and first used in [7]. This method is based on the use of interesting
properties of some generalized Fourier expansions enabling us to convert integro-differential
equations into algebraic ones. In [7], the method allowed us to compute the non-radiative
relaxation of the localized exciton in solids in the short time region. The main aim of this
paper is to develop a general and accurate method for the solution of the GME and to
investigate the time behaviour of the system for both the short and long times.

As a suitable basis for the development of such a method we consider the same model
Hamiltonian as in [7]. This choice makes it possible to compare our results in the short time
region with those obtained in [7]. Moreover, the relative simplicity of the model allows us
to solve the corresponding Liouville equation by a direct numerical method. These results
are used to test the accuracy of our method.

In section 2, we introduce the model system. It consists of the above-mentioned
electron system modelled by two energy levels, which are subject to the interaction with
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one internal optical vibrational mode (phonon mode). This model simulates a diatomic
molecule oscillating in the harmonic approximation. We suppose that it can be excited to
the first excited level, without changing the vibrational mode. This mode interacts with
the thermodynamic reservoir (bath) representing very fast electronic states and remaining
acoustic modes in a solid or surrounding molecules in a liquid or a gas. In both cases, the
interaction with the bath can be taken as stochastic if the processes in the bath are much
faster than the relaxation of the first excited state. To describe the stochastic interaction
we use the generalized Haken–Strobl–Reineker model [11]. We generalize this model to
include finite-temperature effects analogously to [13, 14]. The direct interaction of the fast
modes and the above-mentioned electron levels is not considered.

In section 3, we formulate the GME for our system and obtain a system of coupled
integro-differential equations in which the first time derivative of the density matrix depends
on the convolution of the so-called memory functions with the density matrix of the system.
To solve this system of equations we use some interesting properties of the Laguerre
functions (sections 4 and 5), which enable us, using the expansion of the memory functions
and density matrix into this orthonormal set, not only to transform these integro-differential
equations into algebraic ones, but also to derive interesting analytical results for the memory
functions. From known memory functions we can then calculate the time evolution of the
reduced density matrix.

The probability of finding the system at the first excited level is given by the
corresponding diagonal element of the electron density matrix. Its time dependence is
investigated for several different temperatures of the bath and for a few different values of
the parameters of the interaction among the components of the system.

One very important feature of our approach is that our treatment does not have
perturbative character and all approximations are numerical only. In practical applications,
one has to truncate the infinite expansions of the memory functions and density matrix to
a finite number of terms. However, the accuracy can be easily checked by controlling the
contribution of new terms when the expansion is enlarged. Another important aspect is that
our method does not rely either on any concrete form of the model Hamiltonian or the type
of the stochastic interaction with the bath. Therefore, this method can easily be applied to
other problems where solution of GME is required.

2. Model Hamiltonian and stochastic interaction with the bath

Our Hamiltonian consists of two parts: the most interesting is the two electron levels
describing the ground and first excited states of a molecule. The second is the harmonic
oscillator describing the vibrational optical phonon interacting linearly with these states.
These two parts can, for example, represent an isolated two-state diatomic molecule
oscillating in the harmonic approximation. To describe the interaction of this system with
the surroundings, we introduce the thermodynamic bath. We suppose that there is an
interaction between the optical phonon and thermodynamic bath, which can be described
by a generalized stochastic model, and that the bath does not influence the electron levels.
Thus, the interaction between the electron levels and the bath is realized via the phonon
mode.

Following [7], we assume that our two level system is excited at timet = 0. We
assume that|1〉 and |2〉 are the first excited and ground states with the energies ¯h�ε and
−h̄�ε, respectively. Here, ¯h is the Planck constant and� is the single phonon mode
frequency. The Hamiltonian of the two-level electron system and the optical vibrational
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mode is assumed in the form

Hex,ph = h̄�(εσz + b+b) (1)

whereb and b+ are optical phonon anihilation and creation operators andσz denotes the
Pauli matrix. The interaction Hamiltonian has the form

Hint = h̄�(b
+ + b)√

2
(Dσz +1σx) (2)

whereD and1 are relative coupling constants of the two-level system with the optical
mode. The interaction is linear in the phonon displacement. Thus, the complete Hamiltonian
assumed in this paper reads

H = h̄�
[
(b+b + εσz)+ b + b

+
√

2
(Dσz +1σx)

]
= Hex,ph+Hint. (3)

To describe the interaction with the bath we use the generalized Haken–Strobl–Reineker
model [11]. Henceforth, we assume thatL

′
denotes the Liouville superoperator of our system

without the interaction with the bath

L
′
. . . = 1

h̄
[H, . . .]. (4)

We assume further thatLs denotes the Liouville superoperator describing the interaction
with the phonon bath. According to [15], the stochastic contribution reads

Ls
mα,nβ,pγ,qδ = iδmpδnq

[
2δαβ

(
γαγ − δαγ

∑
ε

γεα

)
− (1− δαβ)δαγ δβδ

∑
ε

(γεα + γεβ)
]
. (5)

Here, the phonon eigenstates are denoted by the Greek letters and the energy states by the
Latin ones. Theγαβ coefficients (6= γβα owing to the finite temperature effect) are taken in
the form [16]

γαβ = k̃
[
(α + 1)δβ,α+1+ α exp

(
− h̄ω
kbT

)
δβ,α−1

]
. (6)

The detailed equilibrium conditions are obeyed by this choice. The coefficientk̃ determines
the strength of the interaction between the harmonic oscillator and the bath. We note that
k̃ need not be small. The total Liouville superoperator of our system equals

L = L′ + Ls. (7)

3. Generalized master equation

To calculate the density matrix we have to solve the Liouville equation

∂

∂t
ρ(t) = −iLρ(t) (8)

with the initial condition

ρ(0) = |1〉〈1| ⊗ ρR. (9)

Here,ρR = exp(−βHph)/Z is the canonical equilibrium phonon density matrix. This initial
condition means that the system is excited att = 0. Since we are not interested in the
complete information described by the density matrix we use the so-called Argyres–Kelley
projection superoperator [17]

PA =
∑
m,n

|m〉〈n| ⊗ ρR Trph〈m|A|n〉. (10)
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This superoperator performs an average over the phonon states and selects the elements of
the density matrix describing the two level system. The master equation for the relevant
informationPρ(t) follows from the Nakajima–Zwanzig identity [10]

∂

∂t
Pρ(t) = −iPLPρ(t)− iPLPe−i(1−P)L(t−t0)(1− P)ρ(t0)

−
∫ t

t0

PLe−i(1−P)L(t−τ)(1− P)LPρ(τ) dτ. (11)

This equation is called the GME. Taking the Argyres–Kelley projection superoperator (10)
and the initial conditions (9), the second term on the right-hand side of (11) disappears and
we get a system of equations

∂

∂t
ρmn(t) = −

∑
pq

[
umnpqρpq(t)+

∫ t

0
wmnpq(t − τ)ρ(τ) dτ

]
. (12)

Here, we introduce the reduced density matrix operator

ρmn(t) = Trph〈n|ρ(t)|m〉 (13)

the time local term

umnpq = Trph〈m|L(|p〉〈q| ⊗ ρR)|n〉 (14)

and the so-called memory functions

wmnpq(t) = Trph〈m|L exp{i(1− P)Lt}(1− P)L(|p〉〈q| ⊗ ρR)|n〉. (15)

4. Use of the Laguerre functions for the solution of the GME

As seen in section 2, our problem leads to the solution of the system of integro-differential
equations. We can easily verify that the first derivative of the Laguerre polynomial and the
convolution of the two Laguerre polynomials can be expressed as a linear combination of
the Laguerre polynomials [18]. In this section, we use these interesting properties of the
Laguerre polynomials to convert the GME into algebraic equations.

First we introduce the Laguerre functions as

Ln(t) = Ln(t)e−at (16)

wherea > 0, a ∈ R andn = 0, 1, . . . . Ln(t) is the Laguerre polynomial of thenth order

Ln(t) = 1

n!
et

dn

dtn
(e−t tn). (17)

The e−at factor may be useful to reduce the magnitude ofLn(t) for very large timet . These
functions are orthonormal with respect to the scalar product with the integration∫ ∞

0
e−(1−2a)t . . . dt (18)

and have similar properties with respect to the first derivative and convolution as the
Laguerre polynomials.

The GME (11) is the convolution integro-differential equation. To simplify the
convolution we use the following property ofLn(t) [18]∫ t

0
Ln(t − τ)Lm(τ) dτ = Ln+m(t)− Ln+m+1(t). (19)
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To transform the time derivative in equation (12) we use the equation

d

dt
Ln(t) = −

n−1∑
m=0

Lm(t)e
−at − aLn(t)e−at =

n−1∑
m=0

Lm(t)− aLn(t). (20)

Supposing that we can expandρpq(t) andwmnpq(t) into the power series inLn(t)

ρpq(t) =
∑
k

ρkpqLk(t) (21)

and

wmnpq(t) =
∑
k

wkmnpqLk(t) (22)

whereρkpq andwkmnpq are expansion coefficients, we can transform equation (12) into an
algebraic form. We use the fact thatLk(t = 0) = 1 for all k. This enables us to introduce
the initial condition into the equation, because

∑∞
k=0 ρ

k
pq = ρpq(0). In a special casek = 0

we get

δm1δn1− (1− a)ρ0
mn =

2∑
pq

[umnpq + w0
mnpq ]ρ0

pq (23)

which can be transformed into

B0
mn = δm1δn1 =

2∑
pq

Mmnpqρ
0
pq (24)

where

Mmnpq = umnpq + w0
mnpq + (1− a)δmpδnq . (25)

For k > 0 we obtain

Bkmn = δm1δn1−
k−1∑
j=0

[
ρjmn −

2∑
pq

(wk−jmnpq − wk−j−1
mnpq )ρ

j
pq

]
=

2∑
pq

Mmnpqρ
k
pq . (26)

Introducing the transformation of the indices

i = 2m+ n− 2 (27)

we can rewrite equations (26) and (24) as

Bki =
4∑

j=0

Mijρ
k
j k = 0, 1, 2, . . . (28)

with the solution in the form

ρki =
4∑

j=1

(M−1)ijB
k
j . (29)

Thus, for given coefficients of the memory functionwkmnpq , we can calculateρkmn. The
factor δm1δn1 in Bkmn plays the role of the initial condition and must be always replaced by
the correspondingρmn(0) in other applications. To solve our problem completely, we must
determine the expansion coefficientswkmnpq .
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5. Expansion of the memory functions in terms of the Laguerre functions

In this section, we find the expansion coefficients of the exponential appearing in the
definition of the memory function (15) into the Laguerre functions. In this way we obtain
a new analytical expression for the expansion coefficientswkmnpq . Results can be written in
a very simple algebraic form.

Using the scalar product (18) we get for the expansion coefficientswkmnpq

wkmnpq = Trph〈m|L
[ ∫ ∞

0
exp{−i(1− P)Lt}Lk(t)e−ate−(1−2a)t dt

]
(1− P)L|p〉〈q| ⊗ ρR|n〉.

(30)

It can be seen from equation (30) that we have to calculate the following integral∫ ∞
0

exp(−At)Lk(t) dt (31)

where

A = i(1− P)L+ (1− a) (32)

anda is the exponent in the Laguerre function (16). Using another interesting property of
the functionsLk(t) [18]∫ t

0
Lk(s) ds = Lk(t)− Lk+1(t) (33)

and with integration by parts in equation (31) we get∫ ∞
0

exp(−At)Lk(t) dt = (A− 1)kA−(k+1). (34)

This integration is valid not only ifA is a number, but also ifA is a positive definite matrix
defined above. We can easily verify that the commutator [A, (1−P)L] equals zero. It also
implies that [A−1, (1− P)L] = 0 so we can now rewrite equation (30) into the form

wkmnpq = Trph〈m|L(1− P)LA−1(1− A−1)k|p〉〈q| ⊗ ρR|n〉. (35)

This expression is suitable for numerical calculations. To obtain the coefficientwk=0
mnpq we

perform the trace over the phonon states of the operatorL(1− P)LA−1 in equation (35).
For k > 0 this operator must be multiplied by(1− A−1)k.

At this point we have thewkmnpq coefficients necessary for the evaluation of theρkmn
coefficients. The last remaining step is to write down the matrix elements ofL and(1−P)L.
The matrix elements ofLs are given in equation (5). For the matrix elements ofL we get

Liα,jβ,kγ,lδ = 1

h̄
(Hiα,kγ δlδ,jβ −Hlδ,jβδkγ,iα) (36)

where

Hiα,kγ = h̄�[αδαγ + ε(δi1δk1− δi2δk2)] + h̄�
(√
γ δα+1,γ +

√
γ + 1δα−1,γ

)
×
[
D√

2
(δi1δk1− δi2δk2)+ 1√

2
(δi1δk2+ δi2δk1)

]
. (37)

The projection superoperatorP is given, according to (10), by its matrix elements

Piα,jβ,kγ,lδ = δikδjl(α|ρR|β)δγ δ. (38)

The elements of(1− P)L can be obtained by a matrix multiplication.
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Figure 1. Dependence of the probabilityρ11(t) of finding the system at the excited state on
different values of the reciprocal temperatureβ for the parametersε = 3, k̃ = 1,D = 1 and
1 = 1.

The method suggested above transforms the Liouville equation into the system of
algebraic equations for the reduced density matrix elements (13). The use of the complete
set of the Laguerre functions makes it possible to derive new analytical expressions (35) for
the memory functions. We show in the following section that equation (35) yields accurate
results even for surprisingly long times.

6. Numerical results

First, we define the timescale for describing the dynamics of our system. We put� = 1,
which is equivalent to the choice of the time unit�−1. We denote the maximum (cut-
off) number of phonons asN . Similarly to [7] we takeN = 8. Tests show that further
increase ofN leads to negligible changes for all the investigated cases. Thea constant in
the Laguerre function definition (16) is taken as 0.3 in all computations. The probability
ρ11(t) =

∑
γ ρ1γ,1γ (t) of finding the system at the first excited state is calculated for several

values of the parametersε, k̃,D,1 andβ = 1
kBT

, wherekB is the Boltzmann constant and
T is the temperature of the bath (see figures 1–6).

In figure 1, we show the probabilityρ11(t) for different temperatures and the strong
interaction of the electron system with the bathk̃ = 1. We see that by increasing temperature
to T = 1/(kBβ) we get a steeper decay ofρ11(t) for short timest and a higher equilibrium
value ofρ11(t) at long times. Owing to the strong interaction with the bath the oscillations
of ρ11(t) are small. The short time region of figure 1 is shown in figure 2. It is seen that
the time derivative ofρ11(t) at t = 0 equals zero, in contrast to the results following from
the Pauli master equation (PME).

In figure 3, the cases of the switched-on and switched-off interaction with the bath
are compared. Thus, for small timet the missing interaction with the bath (k̃ = 0) leads
to a steeper decay ofρ11(t). However, the probabilityρ11(t) does not converge to any
equilibrium value. We see that the interaction with one phonon mode without the interaction



9436 T Mančal et al

Figure 2. Detail of the short time region of figure 1.

Figure 3. Comparison of the cases of the switched-on(k̃ = 1) and switched-off(k̃ = 0)
interaction with the bath for the parametersε = 1, β = 1,D = 1 and1 = 1.

with the bath is not sufficient for approaching the equilibrium state of the electron system.
Figure 4 shows the case of the large energy gapε. In the case of the switched-on inter-

action between vibrational mode and the bath (k̃ = 1) we see only a slow decay ofρ11(t).
At the same time, the probabilityρ11(t) oscillates around a very high mean value. Increas-
ing the energy gapε we get a slower decay ofρ11(t). This can be seen better in figure 5
where we show the dependence ofρ11(t) on the energy gapε for the switched-on interaction
with the bath. We see that the large energy gap leads to a slow decay ofρ11(t). The same
situation can be found in case of the switched-off interaction with the reservoir (k̃ = 0). Let
us note that in this situation with̃k = 0, the second-order PME yields no relaxation at all.
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Figure 4. Comparison of the switched-on and switched-off interaction with the thermodynamic
bath in case of the large energy gapε = 10 and the parametersβ = 1,D = 1 and1 = 1.

Figure 5. Dependence ofρ11(t) on the increasing energy gapε for the parameters̃k = 1, β =
1,D = 1 and1 = 1.

Figure 6 compares the results for the weak coupling (k̃ = 0.1) with the switched-
off interaction with the bath (̃k = 0). Strong oscillations occur in case of the switched-
off coupling. However, significant oscillations can be also observed in case of the weak
coupling. It is seen that even for the weak interaction with the bath the system approaches
the equilibrium state for sufficiently larget .

The dependence ofρ11(t) on D and1 was discussed in detail in [7] and will not be
given here.



9438 T Mančal et al

Figure 6. Comparison of the weak coupling case(k̃ = 0.1) with the switched-off interaction
with the bath(k̃ = 0) for the parametersε = 1, β = 1,D = 1 and1 = 1.

7. Comparison with direct numerical solution

As an alternative to the method suggested in sections 4 and 5 and in order to check the
power of our method we also solved the system of complex linear differential equations (8)
by numerical integration. This equation can be written as 2(2N + 2)2 (in our caseN = 8),
real linear differential equations for real and imaginary parts of the elements of the density
matrix ρiαjβ .

This system of equations was solved by the Bulirsch–Stoer Runge–Kutta method [19].
To check the stability and accuracy of the solution, we performed several calculations with
different step lengths and numerical accuracies. Even for the oscillating case with the
parameters (ε = 1,D = 1,1 = 1, β = 1, k̃ = 0) and for time going up tot = 50,
10 decimal digits of accuracy of the solution were attainable. The computational time
depends substantially on the timestep, maximum time, demanded accuracy and character of
the solution. Typically, it takes from several tens of minutes to several hours on an HP 715
workstation.

In comparison with this advanced numerical method, our suggested approach requires
several times shorter computational time. In table 1, we see the comparison of the Runge–
Kutta computational time for the timestep dt = 0.05 and dt = 0.25 with the times for the
polynomial computations. The demanded accuracy is six and eight digits, respectively, for
time t up to 50. The parameters of these computations are those of figure 1. The results
obtained by the polynomial method can be computed for any value oft and do not depend
on the timestep. By increasing the number of terms in the expansion in the case of the
strong coupling to the bath the contribution of added terms goes down very quickly (see
table 2). Checking the contribution of the last few terms of the polynomial series provides
a good means to check the accuracy of the computation.

Using the new method we can obtain the results at least three times quicker than by
using the standard approach. Any further increase of the timestep can lead to the loss of
the details in the short time region. This may be important for larger systems, when the
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Table 1. Comparison of the computational times of the Runge–Kutta and our new (polynomial)
method for given accuracy of the results.

Accuracy Timestep R–K Polynomial method

10−6 0.05 0 : 15 : 47 0 : 04 : 35
10−6 0.25 1 : 09 : 15 0 : 04 : 35
10−8 0.05 0 : 17 : 37 0 : 05 : 10
10−8 0.25 1 : 12 : 12 0 : 05 : 10

Table 2. Absolute values of the contributions of the last 10 terms of the series in the Laguerre
functions for an increasing number of terms at various timest .

Number of terms t = 1 t = 10 t = 30 t = 50

21–30 7× 10−4 2× 10−3 5× 10−2 4× 10−1

41–50 7× 10−6 3× 10−6 1× 10−5 8× 10−3

91–100 9× 10−8 1× 10−8 2× 10−6 2× 10−5

141–150 1× 10−9 1× 10−8 4× 10−8 3× 10−6

171–180 6× 10−10 1× 10−9 7× 10−9 7× 10−8

261–270 1× 10−11 1× 10−11 7× 10−10 4× 10−9

351–360 2× 10−13 4× 10−13 1× 10−11 7× 10−10

computational time becomes of the order of days. Another aspect of this comparison is that
we compare the results of our new method of the solution of the set of integro-differential
equations with those obtained by the direct solution of the Liouville equation. However,
the method is not restricted to the full GME derived from the Liouville equation, and can
be applied to the solution of other linear integro-differential equations.

In [7], the calculations were performed until timet , about 10 times shorter than in our
case, i.e. for time whenρ11(t) is still far from its equilibrium value. Further extension of
the method was technically impossible. For these times, our results based on the above
modification agree with those of [7].

8. Conclusions

In this paper, we suggested a new general method of the solution of the GME, and used it
for investigation of the time behaviour of the model electron–phonon system. The Laguerre
functions used in this paper allow us to derive a new analytical expression (35) for the
expansion coefficients of the memory function and to increase the computational accuracy.
The advantage of the method suggested in this paper is that it is non-perturbative and is
in principle applicable to any Hamiltonian and Liouville superoperator. Results indicate, in
many situations and in contrast to PME, an appreciably non-exponential relaxation.

The accuracy of our results and the power of our method were checked by comparison
with the direct numerical solution of the Liouville equation and the results of [7]. In contrast
to [7], our method makes it possible to perform calculations for timet when the probabilities
ρ11(t) andρ22(t) approach their equilibrium values.
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